# Communication and Radar Laboratory Lab. Course EL-392

## **Experiment # 02 (AM & Demodulation)**

Object:- (a) Draw the modulation characteristics ( $\mathbf{m} \ \mathbf{vs} \ \mathbf{A}$ ) of the AM section of the kit supplied (AQUILA AM Demonstrator Model AET – 14)

(b) Use demodulator section of the kit to recover the message signal.

## About the AM kit: AQUILA AM DEMONSTRATOR AET - 14 (CRT-3)

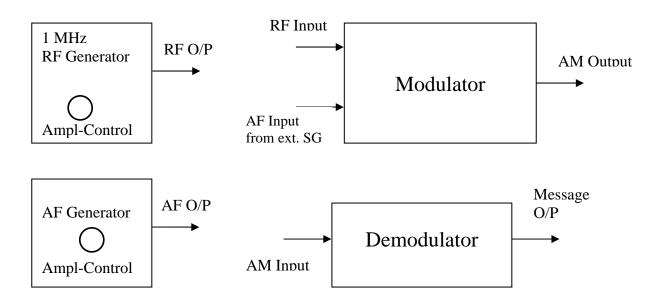


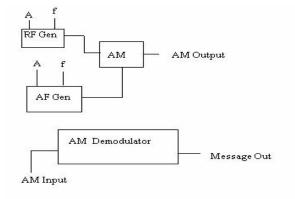

Fig 1:- Kit Layout Diagram

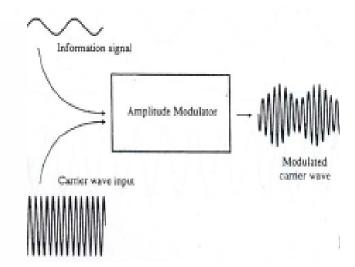
The AQUILA AM DEMONSTRATOR kit model AET – 14, consists of the following:-

- (i) A built-in carrier-wave generator (sine-wave) of fixed frequency 1 MHz and adjustable amplitude.
- (ii) A built-in message generator (sine-wave) of fixed frequency and adjustable amplitude.
- (iii) A modulator and a demodulator as shown in the above figure.

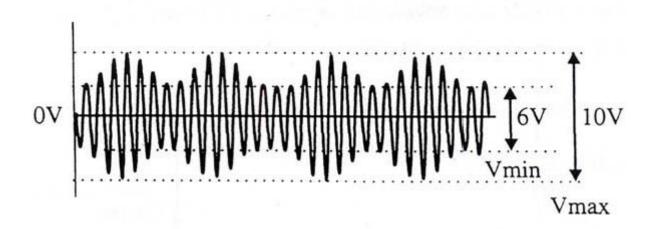
#### Procedure:-

- 1. Switch ON the kit and view its RF O/P on the CRO, adjust its amplitude to maximum and use it as a carrier C(t), connect it to the RF Input terminal of the modulator.
- 2. Without connecting any signal to the AF-Input terminal of the modulator, observe the output of the modulator; the same un-modulated carrier will appear here.
- 3. Now, obtain a sine-wave output from an external signal generator, view it on CRO, adjust it frequency around 1 KHz & amplitude around 2 Volts p-p and use it as a message signal m(t).
- 4. Connect the above adjusted signal m(t) to the AF Input of the modulator, viewing it on one channel & the modulator's O/P (AM O/P) on another channel of the CRO, makr proper adjustments on CRO. → message signal m(t) & AM signal will appear on the CRO screen.
- 5. Change the amplitude of  $m(t) \rightarrow modulation$  index of AM signal will change.


6. Take different values of the amplitudes of m(t) & measure the modulation index corresponding to each value of the amplitude, and tabulate the observations as shown in the observation table.


## **Observations:-**

$$\label{eq:carrier Signal} \begin{split} \text{Carrier Signal (RF signal): } A_c &= -\text{-----} \ mV_{p\text{-}p} \quad \text{(adjusted)} \\ f_c &= 1.0 \ \text{MHz} \quad \text{(fixed)} \\ \text{Modulating Signal (AF signal): } f_m &= -\text{-----} \ \text{Hz} \end{split}$$


| S. No. | Am              | Meas. of max (A) & min (B) of AM signal |   | Modulotion Indox (0/)          |
|--------|-----------------|-----------------------------------------|---|--------------------------------|
|        | $(volts_{p-p})$ | A                                       | В | <b>Modulation Index, m (%)</b> |
| 1.     |                 |                                         |   |                                |
| 2.     |                 |                                         |   |                                |
| 3.     |                 |                                         |   |                                |
| 4.     |                 |                                         |   |                                |
| 5.     |                 |                                         |   |                                |
| 6.     |                 |                                         |   |                                |
| 7.     |                 |                                         |   |                                |
| 8.     |                 |                                         |   |                                |

## **Experimental Setup:-**





Measurement of modulation index of AM wave:-



The modulation index, m = [  $(V_{max} - V_{min}) / (V_{max} + V_{min})$  ] x 100 %

# **Sample Calculation:-**

The modulation index,  $m = [(A - B)/(A + B)] \times 100 \%$ 

For Recovered Message Signal (at demodulator's o/p), Amplitude = volts p-p
Frequency = Hz

A curve between m versus  $A_m$  gives the modulation characteristics of the AM.

\*\*\*\*\*\*